C.U.SHAH UNIVERSITY

 Summer Examination-2016Subject Name : Computer Oriented Numerical Methods
Subject Code : 4CS02ICO1
Semester : 2
Date : 06/05/2016
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Attempt the following questions:
Branch : B.Sc.I.T.
Time :10:30 To 1:30 Marks :70

The \qquad method combines the features of Bisection and Secant methods.
(a) Newton-Raphson
(b) False position
(c) none of these
b) The \qquad method has a fast rate of convergence.
(a) Bisection method
(b) False position method
(c) Secant
(d) none of these
c) $\mathrm{AX}=\mathrm{b}$ is called a non-homogeneous system of linear equations, when \qquad .
(a) $b=0$
(b) $b \neq 0$
(c) none of these
d) The Gauss-Siedel method is an \qquad method.
a) direct
(b) iterative
(c) none of these
e) The Euler's method is the Runge-Kutta method of \qquad order.
(a) $3^{\text {rd }}$
(b) $1^{\text {st }}$
(c) $4^{\text {th }}$
(d) $2^{\text {nd }}$
f) Out of four Runge-Kutta methods, the Runge-Kutta method of \qquad order is having the largest error.
(a) $3^{\text {rd }}$
(b) $1^{\text {st }}$
(c) $4^{\text {th }}$
(d) $2^{\text {nd }}$
g) The numerical integration of one variable is called a \qquad _.
(a) curvature
(b) quadrature
(c) none of these
h) The relation $\{(1,1),(1,3),(1,4),(3,1),(3,3),(3,4)\}$ on the set $\{1,2,3,4\}$ is
\qquad .
(a) symmetric
(b) reflexive
(c) anti-symmetric
(d) transitive
i) The relation $\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$ on the set $\{1,2,3,4\}$ is
\qquad _.
(a) symmetric
(b) reflexive
(c) transitive
(d) all of these
j) Which of the following subsets are partitions of $\{1,2,3,4,5\}$?
(a) $\{1,2\},\{2,3,4\},\{5\}$
(b) $\{1\},\{2,3,4\},\{4,5\}$
(c) $\{1\},\{3,4\},\{5,2\}$
(d) $\{1,2\},\{3,4\},\{4,5\}$

k) Which of the following is a poset?
(a) $\langle N,<\rangle$
(b) $\langle N\rangle$,
(c) $\langle N,=\rangle$
(d) None of these
l) If $\left\langle L, *, \oplus,{ }^{\prime}, 0,1\right\rangle$ is a complemented lattice and $a \in L$ then $a \oplus a^{\prime}=$ \qquad ـ.
(a) 0
(b) 1
(c) a
(d) none of these
m) Which of the following are anti-atoms of Boolean algebra $\left\langle S_{30}, D\right\rangle$?
(a) 6
(b) 10
(c) 15
(d) all of these
n) If $\left\langle S_{20}, *, \oplus,{ }^{\prime}, 1,20\right\rangle$ is a Boolean algebra then complement of 2 is \qquad .
(a) 3
(b) 6
(c) 7
(d) does not exist

Attempt any four questions from Q-2 to Q-8

Q-6

Attempt all questions
a) Find a root of the equation $\mathrm{x}^{3}-9 \mathrm{x}+1=0$ correct up to three decimal places using the Bisection method.
b) Find a root of the equation $\mathrm{e}^{-\mathrm{x}}-10 \mathrm{x}=0$ correct up to three decimal places using the False-position method.
c) Find a root of the equation $\mathrm{x} \sin \mathrm{x}+\cos \mathrm{x}=0$ correct up to three significant figures using the Newton-Raphson method.

Attempt all questions

a) Solve the following system of linear equations by finding A^{-1} by the GaussJordan method. $x+y+z=3 ; x+2 y+3 z=4 ; x+4 y+9 z=6$.
b) Solve the following system of linear equations by the Gauss-Siedel method.
$8 \mathrm{x}+2 \mathrm{y}-2 \mathrm{z}=8 ; \mathrm{x}-8 \mathrm{y}+3 \mathrm{z}=-4 ; 2 \mathrm{x}+\mathrm{y}+9 \mathrm{z}=12$.
c) Solve the following system of linear equations by the Gauss-Elimination method.
$\mathrm{x}+3 \mathrm{y}-2 \mathrm{z}=5 ; 2 \mathrm{x}+\mathrm{y}-3 \mathrm{z}=1 ; 3 \mathrm{x}+2 \mathrm{y}-\mathrm{z}=6$.
Attempt all questions
Evaluate $\int_{0}^{\frac{\pi}{2}} e^{\sin x} d x$ by Simpson's $1 / 3$ rule and taking $\mathrm{n}=6$.
a)
b) Evaluate $\int_{2}^{6} \log x d x$ by Simpson's $3 / 8$ rule and taking $\mathrm{n}=6$.
c) Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ by Trapezoidal rule and taking $\mathrm{n}=4$.

Attempt all questions
a) Solve the ODE $d y / d x=1+y^{2}, y(0)=1$, at $x=0.2$ using the modified Euler's method. Choose $\mathrm{h}=0.1$.
b) Solve the ODE dy/dx $=x+y^{2}, y(0)=0$, at $x=0.2$ using the Runge-Kutta method of $4^{\text {th }}$ order. Choose $h=0.2$.
c) Solve the ODE $d y / d x=x+y, y(0)=0$, at $x=0.6$ using Euler's method. Choose
$\mathrm{h}=0.1$. $\mathrm{h}=0.1$.
a) Find the cover of each element and draw the Hasse diagram of $\left\langle S_{90}, D\right\rangle$
b) Prove that $\left\langle S_{30}, D\right\rangle$ is a lattice, where D denotes divides relation.
c) Show that the relation $\{(f, g) \mid f(x)-g(x)=c$, for some $c \in Z$; for all $x \in Z\}$ is an equivalence relation on the set of functions from Z to Z ?

Q-7

Q-8 Attempt all questions
a) Prove that $\langle N, D\rangle$ is a poset, where D denotes divides relation.
b) Prove that $\left\langle S_{42}, D\right\rangle$ is a complemented lattice, where D denotes divides relation.
c) Draw the Hasse diagram of $\langle P(X), \subseteq\rangle$, Where $X=\{a, b, c\}$ and \subseteq denotes the relation of "subset".

Attempt all questions

a) Let m be a positive integer greater than 1 , show that the relation $R=\{(a, b) \mid a \equiv b(\bmod m)\}$ is an equivalence relation on the set of integers. What are the partitions of the integers arising from congruence modulo 4 ?
b) Prove that $\langle R, \min , \max \rangle$ is a lattice.
c) Find meet irreducible, join irreducible, atoms and anti-atoms of $\left\langle S_{30}, D\right\rangle$.

